Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » arxiv.0705.1637

 Article overview


Comparative study of complex N- and O-bearing molecules in hot molecular cores
F. Fontani ; I. Pascucci ; P. Caselli ; F. Wyrowski ; R. Cesaroni ; C.M. Walmsley ;
Date 11 May 2007
Subject Astrophysics (astro-ph)
AbstractWe have observed several emission lines of two Nitrogen-bearing (C2H5CN and C2H3CN) and two Oxygen-bearing (CH3OCH3 and HCOOCH3) molecules towards a sample of well-known hot molecular cores (HMCs) in order to check whether the chemical differentiation seen in the Orion-HMC and W3(H_2O) between O- and N-bearing molecules is a general property of HMCs. With the IRAM-30m telescope we have observed 12 HMCs in 21 bands, centered at frequencies from 86250 to 258280 MHz. The rotational temperatures obtained range from ~100 to ~150 K in these HMCs. Single Gaussian fits performed to unblended lines show a marginal difference in the line peak velocities of the C2H5CN and CH3OCH3 lines, indicating a possible spatial separation between the region traced by the two molecules. On the other hand, neither the linewidths nor the rotational temperatures and column densities confirm such a result. By comparing the abundance ratio of the pair C2H5CN/C2H3CN with the predictions of theoretical models, we derive that the age of our cores ranges between 3.7 and 5.9x10^{4} yrs. The abundances of C2H5CN and C2H3CN are strongly correlated, as expected from theory which predicts that C2H3CN is formed through gas phase reactions involving C2H5CN. A correlation is also found between the abundances of C2H3CN and CH3OCH3, and C2H5CN and CH3OCH3. In all tracers the fractional abundances increase with the H_2 column density while they are not correlated with the gas temperature.
Source arXiv, arxiv.0705.1637
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica