Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 0709.3792

 Article overview



Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)
J. Boissier ; D. Bockelée-Morvan ; N. Biver ; J. Crovisier ; D. Despois ; B.G. Marsden ; R. Moreno ;
Date 24 Sep 2007
AbstractWe present observations of rotational lines of H2S, SO and CS performed in comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure interferometer (IRAM). The observations provide informations on the spatial and velocity distributions of these molecules. They can be used to constrain their photodissociation rate and their origin. We use a radiative transfer code which allows us to compute synthetic line profiles and interferometric maps, to be compared to the observations. Both single-dish spectra and interferometric spectral maps show a day/night asymmetry in the outgassing. From the analysis of the spectral maps, including the astrometry, we show that SO and CS present in addition a jet-like structure that may be the gaseous counterpart of the dust high-latitude jet observed in optical images. A CS rotating jet is also observed. Using the astrometry provided by continuum radio maps obtained in parallel, we conclude that there is no need to invoke of nongravitational forces acting on this comet, and provide an updated orbit. The radial extension of H2S is found to be consistent with direct release from the nucleus. SO displays an extended radial distribution. Assuming that SO2 is the parent of SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from the Sun. This is lower than most laboratory-based estimates and may suggest that SO is not solely produced by SO2 photolysis. From the observations of J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5 s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be constrained due to insufficient resolution, but our data are consistent with published values. These observations illustrate the cometary science that will be performed with the future ALMA interferometer.
Source arXiv, 0709.3792
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica