Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » pubmed » pmid16015334

 Article overview



Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development
Maria Barna ; Pier Paolo Pandolfi ; Lee Niswander ;
Date 14 Jul 2005
Journal Nature, 436 (7048), 277-81
AbstractThe vertebrate limb initially develops as a bud of mesenchymal cells that subsequently aggregate in a proximal to distal (P-D) sequence to give rise to cartilage condensations that prefigure all limb skeletal components. Of the three cardinal limb axes, the mechanisms that lead to establishment and patterning of skeletal elements along the P-D axis are the least understood. Here we identify a genetic interaction between Gli3 (GLI-Kruppel family member 3) and Plzf (promyelocytic leukaemia zinc finger, also known as Zbtb16 and Zfp145), which is required specifically at very early stages of limb development for all proximal cartilage condensations in the hindlimb (femur, tibia, fibula). Notably, distal condensations comprising the foot are relatively unperturbed in Gli3(-/-);Plzf(-/-) mouse embryos. We demonstrate that the cooperative activity of Gli3 and Plzf establishes the correct temporal and spatial distribution of chondrocyte progenitors in the proximal limb-bud independently of known P-D patterning markers and overall limb-bud size. Moreover, the limb defects in Gli3(-/-);Plzf(-/-) embryos correlate with the transient death of a specific subset of proximal mesenchymal cells that express bone morphogenetic protein receptor, type 1B (Bmpr1b) at the onset of limb development. These findings suggest that the development of proximal and distal skeletal elements is distinctly regulated early during limb-bud formation. The initial division of the vertebrate limb into two distinct molecular domains is consistent with fossil evidence indicating that the upper and lower extremities of the limb have different evolutionary origins.
Source PubMed, pmid16015334 doi: 10.1038/nature03801
Services Forum | Review | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica