Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0108182

 Article overview


The Las Campanas IR Survey. II. Photometric redshifts, comparison with models and clustering evolution
A. E. Firth ; R. S. Somerville ; R. G. McMahon ; O. Lahav ; R. S. Ellis ; C. N. Sabbey ; P. J. McCarthy ; H.-W. Chen ; R. O. Marzke ; J. Wilson ; R. G. Abraham ; M. G. Beckett ; R. G. Carlberg ; J. R. Lewis ; C. D. Mackay ; D. C. Murphy ; A. E. Oemler ; S. E. Persson ;
Date 10 Aug 2001
Journal Mon.Not.Roy.Astron.Soc. 332 (2002) 617
Subject astro-ph
Affiliation2 and 5), J. Wilson , R. G. Abraham (1 and 4), M. G. Beckett (1 and 2), R. G. Carlberg , J. R. Lewis , C. D. Mackay , D. C. Murphy , A. E. Oemler , S. E. Persson ( Cambridge, OCIW, Caltech, U. Toronto, S. F. State
AbstractThe LCIR Survey, using the Cambridge IR Survey Instrument (CIRSI), reaches H 20-21 over ~1 deg^2. We present results for 744 arcmin^2 in which public UBVRI data exist. We compare optical-IR colours with predictions of a semi-analytic hierarchical model (SAM) and find reasonable agreement. We also determine photometric redshifts, finding a median z of z_m ~ 0.55. We compare N(z) of different spectral types with models, showing that the observations are inconsistent with simple PLE models while the SAM provides a reasonable fit to the total N(z) but underestimates the number of z ~ 1 red spectral types. We also present N(z) for samples of red objects (EROs). We find that EROs with R - H > 4 and H < 20.5 have z_m ~ 1; redder EROs have higher z_m. For 19 < H < 20, EROs with R - H > 4 comprise ~18% of the observed galaxy population while in the SAM they contribute only ~4%. We also determine the angular correlation function w(theta) for magnitude, colour, spectral type and photo-z selected samples and use the estimated N(z) to derive the spatial clustering xi(r). Parametrizing xi(r) by xi(r_c,z)=(r_c/r_*(z))^(-1.8) (r_c comoving), we find that r_*(z) increases by ~1.5-2 times from z = 0 to z ~ 1.2. We interpret this as a selection effect - the galaxies selected at z ~ 1.2 are intrinsically very luminous. When galaxies are selected by absolute magnitude we find no evidence for evolution in r_* over this z range. Extrapolated to z = 0, we find r_*(0) ~ 6.5 h^-1Mpc for red galaxies and r_*(0) ~ 2-4 h^-1Mpc for blue galaxies. We also find that while the angular clustering amplitude of EROs with R - H > 4 or I - H > 3 is up to four times that of the whole galaxy population, the spatial clustering length r_*(z=1) is ~7.5-10.5 h^-1Mpc which is only a factor of ~1.7 times r_* for non-EROs lying in a similar z and luminosity range.
Source arXiv, astro-ph/0108182
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica