Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » cond-mat/0102454

 Article overview


Many-body Effects on Excitonic Optical Properties of Photoexcited Semiconductor Quantum Wire Structures
D. W. Wang ; S. Das Sarma ;
Date 25 Feb 2001
Journal Phys. Rev. B 64, 195313 (2001).
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractWe study carrier interaction induced many-body effects on the excitonic optical properties of highly photoexcited one-dimensional semiconductor quantum wire systems by solving the dynamically screened Bethe-Salpeter equation using realistic Coulomb interaction between carriers. Including dynamical screening effects in the electron/hole self-energy and in the electron-hole interaction vertex function, we find that the excitonic absorption is essentially peaked at a constant energy for a large range of photoexcitation density ($n= 0-6 imes 10^5$ cm$^{-1}$), above which the absorption peak disappears without appreciable gain i.e., extit{no} exciton to free electron-hole plasma Mott transition is observed, in contrast to previous theoretical results but in agreement with recent experimental findings. This absence of gain (or the non-existence of a Mott transition) arises from the strong inelastic scattering by one-dimensional plasmons or charge density excitations, closely related to the non-Fermi liquid nature of one-dimensional systems. Our theoretical work demonstrates a transition or a crossover in one-dimensional photoexcited electron-hole system from an effective Fermi liquid behavior associated with a dilute gas of noninteracting excitons in the low density region ($n<10^5$ cm$^{-1}$) to a non-Fermi liquid in the high density region ($n>10^5$ cm$^{-1}$). The conventional quasi-static approximation for this problem is also carried out to compare with the full dynamical results. Numerical results for exciton binding energy and absorption spectra are given as functions of carrier density and temperature.
Source arXiv, cond-mat/0102454
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica