Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » cond-mat/0103290

 Article overview


Low-temperature kinetics of exciton-exciton annihilation of weakly localized one-dimensional Frenkel excitons
I.V.Ryzhov ; G.G. Kozlov ; V.A.Malyshev ; J. Knoester ;
Date 14 Mar 2001
Subject Disordered Systems and Neural Networks | cond-mat.dis-nn
AbstractWe present results of numerical simulations of the kinetics of exciton-exciton annihilation of weakly localized one-dimensional Frenkel excitons at low temperatures. We find that the kinetics is represented by two well-distinguished components: a fast short-time decay and a very slow long-time tail. The former arises from excitons that initially reside in states belonging to the same localization segment of the chain, while the slow component is caused by excitons created on different localization segments. We show that the usual bi-molecular theory fails in the description of the behavior found. We also present a qualitative analytical explanation of the non-exponential behavior observed in both the short- and the long-time decay components.
Source arXiv, cond-mat/0103290
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica