Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/0104255

 Article overview


Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation
S. Ogawa ; M. Tsubota ; Y. Hattori ;
Date 13 Apr 2001
Subject Soft Condensed Matter | cond-mat.soft
AffiliationOsaka City Univ.), M. Tsubota (Osaka City Univ.), Y. Hattori (Kyusyu Institute of Tech.
AbstractWe study numerically the reconnection of quantized vortices and the concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation. Two quantized vortices reconnect following the process similar to classical vortices; they approach, twist themselves locally so that they become anti-parallel at the closest place, reconnect and leave separately.The investigation of the motion of the singular lines where the amplitude of the wave function vanishes in the vortex cores confirms that they follow the above scenario by reconnecting at a point. This reconnection is not contradictory to the Kelvin’s circulation theorem, because the potential of the superflow field becomes undefined at the reconnection point. When the locally anti-parallel part of the vortices becomes closer than the healing length, it moves with the velocity comparable to the sound velocity, emits the sound waves and leads to the pair annihilation or reconnection; this phenomena is concerned with the Cherenkov resonance. The vortices are broken up to smaller vortex loops through a series of reconnection, eventually disappearing with the acoustic emission. This may correspond to the final stage of the vortex cascade process proposed by Feynman. The change in energy components, such as the quantum, the compressible and incompressible kinetic energy is analyzed for each dynamics. The propagation of the sound waves not only appears in the profile of the amplitude of the wave function but also affects the field of its phase, transforming the quantum energy due to the vortex cores to the kinetic energy of the phase field.
Source arXiv, cond-mat/0104255
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica