Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » astro-ph/9508025

 Article overview



The Structure of Cold Dark Matter Halos
Julio F. Navarro ; Carlos S. Frenk ; Simon D.M. White ;
Date 7 Aug 1995
Journal Astrophys.J. 462 (1996) 563-575
Subject astro-ph
AffiliationSteward Observatory, University of Arizona), Carlos S. Frenk (Physics Department, University of Durham), and Simon D.M. White (MPI fur Astrophysik, Garching
AbstractWe use N-body simulations to investigate the structure of dark halos in the standard Cold Dark Matter cosmogony. Halos are excised from simulations of cosmologically representative regions and are resimulated individually at high resolution. We study objects with masses ranging from those of dwarf galaxy halos to those of rich galaxy clusters. The spherically averaged density profiles of all our halos can be fit over two decades in radius by scaling a simple ``universal’’ profile. The characteristic overdensity of a halo, or equivalently its concentration, correlates strongly with halo mass in a way which reflects the mass dependence of the epoch of halo formation. Halo profiles are approximately isothermal over a large range in radii, but are significantly shallower than $r^{-2}$ near the center and steeper than $r^{-2}$ near the virial radius. Matching the observed rotation curves of disk galaxies requires disk mass-to-light ratios to increase systematically with luminosity. Further, it suggests that the halos of bright galaxies depend only weakly on galaxy luminosity and have circular velocities significantly lower than the disk rotation speed. This may explain why luminosity and dynamics are uncorrelated in observed samples of binary galaxies and of satellite/spiral systems. For galaxy clusters, our halo models are consistent both with the presence of giant arcs and with the observed structure of the intracluster medium, and they suggest a simple explanation for the disparate estimates of cluster core radii found by previous authors. Our results also highlight two shortcomings of the CDM model. CDM halos are too concentrated to be consistent with the halo parameters inferred for dwarf irregulars, and the predicted abundance of galaxy halos is larger than the observed abundance of galaxies.
Source arXiv, astro-ph/9508025
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica