Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2285
Articles: 1'919'569
Articles rated: 2570

11 December 2019
 
  » arxiv » cond-mat/0111294

  Article overview


Dynamic Hubbard Model
J.E. Hirsch ;
Date 16 Nov 2001
Journal Phys.Rev.Lett. 87, 206402 (2001)
Subject Strongly Correlated Electrons; Superconductivity | cond-mat.str-el cond-mat.supr-con
AbstractThe Hubbard on-site repulsion $U$ between opposite spin electrons on the same atomic orbital is widely regarded to be the most important source of electronic correlation in solids. Here we extend the Hubbard model to account for the fact that the experimentally measured atomic $U$ is different from the one obtained by calculation of the atomic Coulomb integral. The resulting model describes quasiparticles that become increasingly dressed as the number of electrons in the band increases. Superconductivity can result in this model through quasiparticle undressing. Various signatures of this physics in spectroscopies in the normal and superconducting states are discussed. A novel effect in the normal state is predicted to be electroluminescence at the sample-positive counterelectrode boundary.
Source arXiv, cond-mat/0111294
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2019 - Scimetrica