forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 2927
Articles: 2'007'093
Articles rated: 2575

22 October 2020
  » arxiv » gr-qc/0105111

 Article overview

New integral equation form of integrable reductions of Einstein equations
G.A.Alekseev ;
Date 28 May 2001
Journal Theor.Math.Phys. 129 (2001) 1466-1483; Teor.Mat.Fiz. 129 (2001) 184-206
Subject General Relativity and Quantum Cosmology; Mathematical Physics; Exactly Solvable and Integrable Systems | gr-qc hep-th math-ph math.MP nlin.SI
AbstractA new development of the ``monodromy transform’’ method for analysis of hyperbolic as well as elliptic integrable reductions of Einstein equations is presented. Compatibility conditions for some alternative representations of the fundamental solutions of associated linear systems with spectral parameter in terms of a pair of dressing (``scattering’’) matrices give rise to a new set of linear (quasi-Fredholm) integral equations equivalent to the symmetry reduced Einstein equations. Unlike previously derived singular integral equations constructed with the use of conserved (nonevolving) monodromy data on the spectral plane for the fundamental solutions of associated linear systems, the scalar kernels of the new equations include another kind of functional parameters -- the evolving (``dynamical’’) monodromy data for the scattering matrices. For hyperbolic reductions, in the context of characteristic initial value problem these data are determined completely by the characteristic initial data for the fields. In terms of solutions of the new integral equations the field components are expressed in quadratures.
Source arXiv, gr-qc/0105111
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2020 - Scimetrica