Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » hep-ph/0109213

 Article overview


Electromagnetic couplings of the ChPT Lagrangian from the perturbative chiral quark model
V. E. Lyubovitskij ; Th. Gutsche ; Amand Faessler ; R. Vinh Mau ;
Date 24 Sep 2001
Journal Phys.Rev. C65 (2002) 025202
Subject hep-ph
AffiliationTuebingen University) and R. Vinh Mau (Paris University
AbstractWe apply the perturbative chiral quark model to the study of the low-energy pi-N interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave pi-N scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p^2) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e^2) radiative corrections to the pi-N scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the pi(-)p atom in the 1s state, which is relevant for the experiment "Pionic Hydrogen" at PSI.
Source arXiv, hep-ph/0109213
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica