Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » hep-th/9204075

 Article overview



The Effective Lagrangian of Three Dimensional Quantum Chromodynamics
G. Ferretti ; S.G.Rajeev ; Z. Yang ;
Date 23 Apr 1992
Journal Int.J.Mod.Phys. A7 (1992) 7989-8000
Subject hep-th
AbstractWe consider the low energy limit of three dimensional Quantum Chromodynamics with an even number of flavors. We show that Parity is not spontaneously broken, but the global (flavor) symmetry is spontaneously broken. The low energy effective lagrangian is a nonlinear sigma model on the Grassmannian. Some Chern--Simons terms are necessary in the lagrangian to realize the discrete symmetries correctly. We consider also another parametrization of the low energy sector which leads to a three dimensional analogue of the Wess--Zumino--Witten--Novikov model. Since three dimensional QCD is believed to be a model for quantum anti--ferromagnetism, our effective lagrangian can describe their long wavelength excitations (spin waves).
Source arXiv, hep-th/9204075
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica