Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'499'343
Articles rated: 2609

16 April 2024
 
  » arxiv » nucl-th/0104047

 Article overview


New results for two-neutrino double beta decay with large particle-particle two body proton-neutron interaction
A. A. Raduta ; O. Haug ; F. Simkovic ; Amand Faessler ;
Date 13 Apr 2001
Journal J.Phys. G27 (2001) 2429-2454
Subject nucl-th
AbstractA model many-body Hamiltonian describing an heterogenous system of paired protons and paired neutrons and interacting among themselves through monopole particle-hole and monopole particle-particle interactions is used to study the double beta decay of Fermi type. The states are described by time dependent approaches choosing as trial functions coherent states of the symmetry groups underlying the model Hamiltonian. One formalism, VP1, is fully equivalent with the standard pnQRPA and therefore fails at a critical value of the particle-particle interaction strength while another one, VP2, corresponds to a two step BCS treatment, i.e. the proton quasiparticles are paired with the neutron quasiparticles. In this way a harmonic description for the double beta transition amplitude is provided for any strength of the particle-particle interaction. The approximation quality is judged by comparing the actual results with the exact result as well as with those corresponding to various truncations of the boson expanded Hamiltonian and transition operator. Finally it is shown that the dynamic ground states provided by VP1 and VP2 are reasonable well approximated by solutions of a variational principle. This remark constitutes a step forward finding an approach where the RPA ground state is a solution of a variational principle equation.
Source arXiv, nucl-th/0104047
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica