Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » math.PR/0110103

 Article overview


The Generalized Spike Process, Sparsity, and Statistical Independence
Naoki Saito ;
Date 10 Oct 2001
Subject Probability; Statistics; Rings and Algebras; Optimization and Control; Numerical Analysis MSC-class: 60G55; 62M99; 93E35; 94A17 | math.PR math.NA math.OC math.RA math.ST q-bio
AbstractA basis under which a given set of realizations of a stochastic process can be represented most sparsely (the so-called best sparsifying basis (BSB)) and the one under which such a set becomes as less statistically dependent as possible (the so-called least statistically-dependent basis (LSDB)) are important for data compression and have generated interests among computational neuroscientists as well as applied mathematicians. Here we consider these bases for a particularly simple stochastic process called ``generalized spike process’’, which puts a single spike--whose amplitude is sampled from the standard normal distribution--at a random location in the zero vector of length $ dim$ for each realization. Unlike the ``simple spike process’’ which we dealt with in our previous paper and whose amplitude is constant, we need to consider the kurtosis-maximizing basis (KMB) instead of the LSDB due to the difficulty of evaluating differential entropy and mutual information of the generalized spike process. By computing the marginal densities and moments, we prove that: 1) the BSB and the KMB selects the standard basis if we restrict our basis search within all possible orthonormal bases in ${mathbb R}^n$; 2) if we extend our basis search to all possible volume-preserving invertible linear transformations, then the BSB exists and is again the standard basis whereas the KMB does not exist. Thus, the KMB is rather sensitive to the orthonormality of the transformations under consideration whereas the BSB is insensitive to that. Our results once again support the preference of the BSB over the LSDB/KMB for data compression applications as our previous work did.
Source arXiv, math.PR/0110103
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica