Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0201284

 Article overview



Structure, Evolution and Nucleosynthesis of Primordial Stars
Lionel Siess ; Mario Livio ; John Lattanzio ;
Date 17 Dec 2001
Subject astro-ph
Affiliation1,2,3,4), Mario Livio and John Lattanzio ( Institut d’Astronomie et d’Astrophysique, ULB, Bruxelles, Belgium Space Telescope Science Institute, Baltimore, USA Department of Mathematics, Monash University, Australia GRAAL, Universite Mo
Abstract(abridge version) The evolution of population III stars (Z=0) is followed from the pre-main sequence phase up to the AGB phase for intermediate-mass stars and up to C ignition in more massive stars...We find that, thanks to the development of mixing episodes (carbon injections) at the beginning of the AGB phase, the carbon abundance of the 1, 1.5, 2, 3, 4 and 5Mo models is significantly increased in the envelope. This process then allows low- and intermediate-mass stars to achieve a ``standard’’ thermally pulsing AGB phase... In the 7Mo model, the CNO envelope abundance following the second dredge-up is so large that the star does not experience the carbon injection episode and follows a more standard thermally pulsing AGB evolution. Our computations also indicate that, thanks to a small overshooting at the base of the convective envelope, the third dredge-up is already operating in stars with M >~1.5 Mo after a few pulses, and that by the end of our modeling, hot bottom burning is activated in stars more massive than ~ 2Mo. This evolutionary behavior suggests that primordial low- and intermediate stars could have been significant contributors to the production of primary 12C, 14N, and may have contributed to some extent to the production of Mg and Al and possibly s-elements (despite the lack of iron seeds) in the early universe.
Source arXiv, astro-ph/0201284
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica