Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2176
Articles: 1'898'627
Articles rated: 2570

17 September 2019
 
  » arxiv » gr-qc/9511036

  Article overview


On a class of consistent linear higher spin equations on curved manifolds
Jörg Frauendiener ; George A. J. Sparling ;
Date 11 Nov 1995
Journal J.Geom.Phys. 30 (1999) 54-101
Subject gr-qc
AffiliationMax-Planck-Institut für Gravitationsphysik) and George A. J. Sparling (Department of Mathematics and Statistics, University of Pittsburgh
AbstractWe analyze a class of linear wave equations for odd half spin that have a well posed initial value problem. We demonstrate consistency of the equations in curved space-times. They generalize the Weyl neutrino equation. We show that there exists an associated invariant exact set of spinor fields indicating that the characteristic initial value problem on a null cone is formally solvable, even for the system coupled to general relativity. We derive the general analytic solution in flat space by means of Fourier transforms. Finally, we present a twistor contour integral description for the general analytic solution and assemble a representation of the group $O(4,4)$ on the solution space.
Source arXiv, gr-qc/9511036
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2019 - Scimetrica