Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0206011

 Article overview


Accretion disks around black holes: dynamical evolution, meridional circulations and gamma ray bursts
William H. Lee & Enrico Ramirez-Ruiz ;
Date 2 Jun 2002
Journal Astrophys.J. 577 (2002) 893
Subject astro-ph
AffiliationInstituto de Astronomia, UNAM) & Enrico Ramirez-Ruiz (IoA, Cambridge
AbstractWe study the hydrodynamical evolution of massive accretion disks around black holes, formed when a neutron star is disrupted by a black hole in a binary system. Initial conditions are taken from 3D calculations of coalescing binaries. Assuming azimuthal symmetry, we follow the time dependence of the disk structure for 0.2 seconds. We use an ideal gas e.o.s., and assume that all the dissipated energy is radiated away. The disks evolve due to viscous stresses, modeled with an alpha law. We study the disk structure, and the strong meridional circulations that are established and persist throughout our calculations. These consist of strong outflows along the equatorial plane that reverse direction close to the surface of the disk and converge on the accretor. In the context of GRBs, we estimate the energy released from the system in neutrinos and through magnetic-dominated mechanisms, and find it can be as high as 10^52 erg and 10^51 erg respectively, during an estimated timescale of 0.1-0.2 seconds. neutrino-anti neutrino annihilation is likely to produce bursts from only an impulsive energy input (the annihilation luminosity scales as t^(-5/2)) and so would be unable to account for a large fraction of bursts with complicated light curves. However a gas mass ~0.1-0.25 Msun survives in the orbiting debris, enabling strong magnetic fields (~10^16 Gauss) to be anchored in the dense matter long enough to power short GRBs. We also investigate the continuous energy injection that arises as the black hole slowly swallows the rest of the disk and discuss its consequences on the GRB afterglow emission.
Source arXiv, astro-ph/0206011
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica