Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0206250

 Article overview


FUSE Observations of the Magellanic Bridge Gas toward Two Early-Type Stars: Molecules, Physical Conditions, and Relative Abundance
N. Lehner ;
Date 14 Jun 2002
Journal Astrophys.J. 578 (2002) 126-143
Subject astro-ph
AffiliationJohns Hopkins University
AbstractWe discuss FUSE observations of two early-type stars, DI1388 and DGIK975, in the low density and low metallicity gas of Magellanic Bridge (MB). Toward DI1388, the FUSE observations show molecular hydrogen, O VI, and numerous other atomic or ionic transitions in absorption, implying the presence of multiple gas phases in a complex arrangement. The relative abundance pattern in the MB is attributed to varying degrees of depletion onto dust similar to that of halo clouds. The N/O ratio is near solar, much higher than N/O in damped Ly-alpha systems, implying subsequent stellar processing to explain the origin of nitrogen in the MB. The diffuse molecular cloud in this direction has a low column density and low molecular fraction. H2 is observed in both the Magellanic Stream and the MB, yet massive stars form only in the MB, implying significantly different physical processes between them. In the MB some of the H2 could have been pulled out from the SMC via tidal interaction, but some also could have formed in situ in dense clouds where star formation might have taken place. Toward DGIK975, the presence of neutral, weakly and highly ionized species suggest that this sight line has also several complex gas phases. The highly ionized species of O VI, C IV, and Si IV toward both stars have very broad features, indicating that multiple components of hot gas at different velocities are present. Several sources (a combination of turbulent mixing layer, conductive heating, and cooling flows) may be contributing to the production of the highly ionized gas in the MB. Finally, this study has confirmed previous results that the high-velocity cloud HVC 291.5-41.2+80 is mainly ionized composed of weakly and highly ions. The high ion ratios are consistent with a radiatively cooling gas in a fountain flow model.
Source arXiv, astro-ph/0206250
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica