Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » pubmed » pmid16383434

 Article overview


Phase-field approach to three-dimensional vesicle dynamics
Thierry Biben ; Klaus Kassner ; Chaouqi Misbah ;
Date 30 Sep 2005
Journal Phys Rev E, 72 (4 Pt 1), 041921
AbstractWe extend our recent phase-field [T. Biben and C. Misbah, Phys. Rev. E 67, 031908 (2003)] approach to 3D vesicle dynamics. Unlike the boundary-integral formulations, based on the use of the Oseen tensor in the small Reynolds number limit, this method offers several important flexibilities. First, there is no need to track the membrane position; rather this is automatically encoded in dynamics of the phase field to which we assign a finite width representing the membrane extent. Secondly, this method allows naturally for any topology change, like vesicle budding, for example. Thirdly, any non-Newtonian constitutive law, that is generically nonlinear, can be naturally accounted for, a fact which is precluded by the boundary integral formulation. The phase-field approach raises, however, a complication due to the local membrane incompressibility, which, unlike usual interfacial problems, imposes a nontrivial constraint on the membrane. This problem is solved by introducing dynamics of a tension field. The first purpose of this paper is to show how to write adequately the advected-field model for 3D vesicles. We shall then perform a singular expansion of the phase field equation to show that they reduce, in the limit of a vanishing membrane extent, to the sharp boundary equations. Then, we present some results obtained by the phase-field model. We consider two examples; (i) kinetics towards equilibrium shapes and (ii) tanktreading and tumbling. We find a very good agreement between the two methods. We also discuss briefly how effects, such as the membrane shear elasticity and stretching elasticity, and the relative sliding of monolayers, can be accounted for in the phase-field approach.
Source PubMed, pmid16383434
Services Forum | Review | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica