Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » pubmed » pmid12636815

 Article overview



Convective heat transport in a rotating fluid layer of infinite Prandtl number: optimum fields and upper bounds on Nusselt number
Nikolay K Vitanov ;
Date 31 Jan 2003
Journal Phys Rev E, 67 (2 Pt 2), 026322
AbstractBy means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically upper bounds on convective heat transport for the case of infinite fluid layer with stress-free vertical boundaries rotating about a vertical axis. We discuss the case of infinite Prandtl number, 1-alpha solution of the obtained variational problem and optimum fields possessing internal, intermediate, and boundary layers. We investigate regions of Rayleigh and Taylor numbers R and Ta, where no analytical bounds can be derived, and compare the analytical and numerical bounds for these regions of R and Ta where such comparison is possible. The increasing rotation has a different influence on the rescaled optimum fields of velocity w(1), temperature theta(1) and the vertical component of the vorticity f(1). The increasing Ta for fixed R leads to vanishing of the boundary layers of w(1) and theta(1). Opposite to this, the increasing Ta leads first to a formation of boundary layers of the field f(1) but further increasing the rotation causes vanishing of these boundary layers. We obtain optimum profiles of the horizontal averaged total temperature field which could be used as hints for construction of the background fields when applying Doering-Constantin method to the problems of rotating convection. The wave number alpha(1) corresponding to the optimum fields follows the asymptotic relationship alpha(1)=(R/5)(1/4) for intermediate Rayleigh numbers. However, when R becomes large with respect to Ta, after a transition region, the power law for alpha(1) becomes close to the power law for the case without rotation. The Nusselt number Nu is close to the nonrotational bound 0.32R(1/3) for the case of large R and small Ta. Nu decreases with increasing Taylor number. Thus, the upper bounds reflect the tendency of inhibiting thermal convection by increasing rotation for a fixed Rayleigh number. For the regions of Rayleigh and Taylor numbers where the numerical and asymptotic bounds on Nu can be compared, the numerical bounds are about 70% lower than the asymptotic bounds.
Source PubMed, pmid12636815
Services Forum | Review | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica