Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0211529

 Article overview


Background Measurements from Balloon-Borne CZT Detectors
Johnathan A Jenkins ; Tomohiko Narita ; Jonathan E. Grindlay ; Peter F. Bloser ; Carl Stahle ; Brad Parker ; Scott Barthelmy ;
Date 25 Nov 2002
Subject astro-ph
AffiliationHarvard), Tomohiko Narita (Holy Cross), Jonathan E. Grindlay (Harvard), Peter F. Bloser (GSFC), Carl Stahle (GSFC), Brad Parker (GSFC), and Scott Barthelmy (GSFC
AbstractWe report detector characteristics and background measurements from two prototype imaging CZT detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10mm x 10mm x 5mm CZT crystals, each with a 4 $ imes$ 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman material. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40deg field-of-view collimator (comprisinga graded passive shield and plastic scintillator) used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previous detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum (from 30 keV to ~450 keV) reaches ~5 x 10^{-3}$ counts/cm^2 -sec-keV at 100 keV and has a power-law index of ~2 at high energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the energy scale because of calibration complications.
Source arXiv, astro-ph/0211529
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica