Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 0712.0022

 Article overview


Warm Molecular Gas in M51: Mapping the Excitation Temperature and Mass of H_2 with the Spitzer Infrared Spectrograph
G. Brunner ; K. Sheth ; L. Armus ; M. Wolfire ; S. Vogel ; E. Schinnerer ; G. Helou ; R. Dufour ; J. Smith ; D. Dale ;
Date 30 Nov 2007
AbstractWe have mapped the warm molecular gas traced by the H_2 S(0) - H_2 S(5) pure rotational mid-infrared emission lines over a radial strip across the nucleus and disk of M51 (NGC 5194) using the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The six H_2 lines have markedly different emission distributions. We obtained the H_2 temperature and surface density distributions by assuming a two temperature model: a warm (T = 100 - 300 K) phase traced by the low J (S(0) - S(2)) lines and a hot phase (T = 400 - 1000 K) traced by the high J (S(2) - S(5)) lines. The lowest molecular gas temperatures are found within the spiral arms (T ~ 155 K), while the highest temperatures are found in the inter-arm regions (T > 700 K). The warm gas surface density reaches a maximum of 11 M_sun/pc^2 in the northwestern spiral arm, whereas the hot gas surface density peaks at 0.24 M_sun/pc^2 at the nucleus. The spatial offset between the peaks in the warm and hot phases and the differences in the distributions of the H_2 line emission suggest that the warm phase is mostly produced by UV photons in star forming regions while the hot phase is mostly produced by shocks or X-rays associated with nuclear activity. The warm H_2 is found in the dust lanes of M51, spatially offset from the brightest HII regions. The warm H_2 is generally spatially coincident with the cold molecular gas traced by CO (J = 1 - 0) emission, consistent with excitation of the warm phase in dense photodissociation regions (PDRs). In contrast, the hot H_2 is most prominent in the nuclear region. Here, over a 0.5 kpc radius around the nucleus of M51, the hot H_2 coincides with [O IV](25.89 micron) and X-ray emission indicating that shocks and/or X-rays are responsible for exciting this phase.
Source arXiv, 0712.0022
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica