Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » cond-mat/0204623

 Article overview


Depinning with dynamic stress overshoots: A hybrid of critical and pseudohysteretic behavior
J. M. Schwarz ; Daniel S. Fisher ;
Date 30 Apr 2002
Subject Disordered Systems and Neural Networks; Statistical Mechanics | cond-mat.dis-nn cond-mat.stat-mech
AbstractA model of an elastic manifold driven through a random medium by an applied force F is studied focussing on the effects of inertia and elastic waves, in particular {it stress overshoots} in which motion of one segment of the manifold causes a temporary stress on its neighboring segments in addition to the static stress. Such stress overshoots decrease the critical force for depinning and make the depinning transition hysteretic. We find that the steady state velocity of the moving phase is nevertheless history independent and the critical behavior as the force is decreased is in the same universality class as in the absence of stress overshoots: the dissipative limit which has been studied analytically. To reach this conclusion, finite-size scaling analyses of a variety of quantities have been supplemented by heuristic arguments. If the force is increased slowly from zero, the spectrum of avalanche sizes that occurs appears to be quite different from the dissipative limit. After stopping from the moving phase, the restarting involves both fractal and bubble-like nucleation. Hysteresis loops can be understood in terms of a depletion layer caused by the stress overshoots, but surprisingly, in the limit of very large samples the hysteresis loops vanish. We argue that, although there can be striking differences over a wide range of length scales, the universality class governing this pseudohysteresis is again that of the dissipative limit. Consequences of this picture for the statistics and dynamics of earthquakes on geological faults are briefly discussed.
Source arXiv, cond-mat/0204623
Other source [GID 527997] pmid12636688
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica