Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/0206070

 Article overview


The structural relaxation of molten sodium disilicate
Jurgen Horbach ; Walter Kob ;
Date 6 Jun 2002
Subject Statistical Mechanics; Disordered Systems and Neural Networks | cond-mat.stat-mech cond-mat.dis-nn
AffiliationInstitute of Physics, Mainz, Germany) and Walter Kob (Laboratoire des Verres, Montpellier, France
AbstractWe use molecular dynamics computer simulations to study the relaxation dynamics of Na2O-2(SiO2) in its molten, highly viscous state. We find that at low temperatures the incoherent intermediate scattering function for Na relaxes about 100 times faster than the one of the Si and O atoms. In contrast to this all coherent functions relax on the same time scale if the wave-vector is around 1AA^-1. This anomalous relaxation dynamics is traced back to the channel-like structure for the Na atoms that have been found for this system. We find that the relaxation dynamics for Si and O as well as the time dependence of the coherent functions for Na can be rationalized well by means of mode-coupling theory. In particular we show that the diffusion constants as well as the alpha-relaxation times follow the power-law predicted by the theory and that in the beta-relaxation regime the correlators obey the factorization property with a master curve that is described well by a von Schweidler-law. The value of the von Schweidler exponent $b$ is compatible with the one found for the mentioned power-law of the relaxation times/diffusion constants. Finally we study the wave-vector dependence of f_s(q) and f(q), the coherent and incoherent non-ergodicity parameters. For the Si and O atoms these functions look qualitatively similar to the ones found in simple liquids or pure silica, in that the coherent function oscillates (in phase with the static structure factor) around the incoherent one and in that the latter is approximated well by a Gaussian function. In contrast to this, f(q) for Na-Na is always smaller than f_s(q) for Na and the latter can be approximated by a Gaussian only for relatively large q.
Source arXiv, cond-mat/0206070
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica