Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 0806.2577

 Article overview



Density dependence of spin relaxation in GaAs quantum wells
L. H. Teng ; P. Zhang ; T. S. Lai ; M. W. Wu ;
Date 16 Jun 2008
AbstractCarrier density dependence of electron spin relaxation in an intrinsic GaAs quantum well is investigated at room temperature using time-resolved circularly polarized pump-probe spectroscopy. It is revealed that the spin relaxation time first increases with density in the relatively low density regime where the linear D’yakonov-Perel’ spin-orbit coupling terms are dominant, and then tends to decrease when the density is large and the cubic D’yakonov-Perel’ spin-orbit coupling terms become important. These features are in good agreement with theoritical predictions by L"u {em et al.} [Phys. Rev. B {f 73}, 125314 (2006)]. A fully microscopic calculation based on numerically solving the kinetic spin Bloch equations with both the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms included, reproduces the density dependence of spin relaxation very well.
Source arXiv, 0806.2577
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica