Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 0807.2611

 Article overview


Quenched LDP for words in a letter sequence
Matthias Birkner ; Andreas Greven ; Frank den Hollander ;
Date 16 Jul 2008
AbstractWhen we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere.
We apply our LDP to prove that the radius of convergence of the moment generating function of the collision local time of two strongly transient random walks on ^d, d geq 1, strictly increases when we condition on one of the random walks, both in discrete time and in continuous time. The presence of these gaps implies the existence of an intermediate phase for the long-time behaviour of a class of coupled branching processes, interacting diffusions, respectively, directed polymers in random environments.
Source arXiv, 0807.2611
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica