Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 0808.3140

 Article overview


Direct calculation of the radiative efficiency of an accretion disk around a black hole
Scott C. Noble ; Julian H. Krolik ; John F. Hawley ;
Date 22 Aug 2008
AbstractNumerical simulation of magnetohydrodynamic (MHD) turbulence makes it possible to study accretion dynamics in detail. However, special effort is required to connect inflow dynamics (dependent largely on angular momentum transport) to radiation (dependent largely on thermodynamics and photon diffusion). To this end we extend the flux-conservative, general relativistic MHD code HARM from axisymmetry to full 3D. The use of an energy conserving algorithm allows the energy dissipated in the course of relativistic accretion to be captured as heat. The inclusion of a simple optically thin cooling function permits explicit control of the simulated disk’s geometric thickness as well as a direct calculation of both the amplitude and location of the radiative cooling associated with the accretion stresses. Fully relativistic ray-tracing is used to compute the luminosity received by distant observers. For a disk with aspect ratio H/r ~ 0.1 accreting onto a black hole with spin parameter a/M = 0.9, we find that there is significant dissipation beyond that predicted by the classical Novikov-Thorne model. However, much of it occurs deep in the potential, where photon capture and gravitational redshifting can strongly limit the net photon energy escaping to infinity. In addition, with these parameters and this radiation model, significant thermal and magnetic energy remains with the gas and is accreted by the black hole. In our model, the net luminosi ty reaching infinity is 6% greater than the Novikov-Thorne prediction. If the accreted thermal energy were wholly radiated, the total luminosity of the accretion flow would be ~20% greater than the Novikov-Thorne value.
Source arXiv, 0808.3140
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica