Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 0808.3899

 Article overview



Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions
X. Chen ; A. Farhoodfar ; T. McIntosh ; R. J. Gooding ; P.W. Leung ;
Date 28 Aug 2008
AbstractA simple and commonly employed approximate technique with which one can examine spatially disordered systems when strong electronic correlations are present is based on the use of real-space unrestricted self-consistent Hartree-Fock wave functions. In such an approach the disorder is treated exactly while the correlations are treated approximately. In this report we critique the success of this approximation by making comparisons between such solutions and the exact wave functions for the Anderson-Hubbard model. Due to the sizes of the complete Hilbert spaces for these problems, the comparisons are restricted to small one-dimensional chains, up to ten sites, and a 4x4 two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about 63,500 and 166 million states, respectively. We have completed these calculations both at and away from 1/2 filling. This approximation is based on a variational approach which minimizes the Hartree-Fock energy, and we have completed comparisons of the exact and Hartree-Fock energies. However, in order to assess the success of this approximation in reproducing ground-state correlations we have completed comparisons of the local charge and spin correlations, including the calculation of the overlap of the Hartree-Fock wave functions with those of the exact solutions. We find that this approximation reproduces the local charge densities to quite a high accuracy, but that the local spin correlations, as represented by < S_i . S_j >, are not as well represented. In addition to these comparisons, we discuss the properties of the spin degrees of freedom in the HF approximation, and where in the disorder-interaction phase diagram such physics may be important.
Source arXiv, 0808.3899
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica