Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 0810.0272

 Article overview



Images IV: Strong evolution of the oxygen abundance in gaseous phases of intermediate mass galaxies since z=0.8
M. Rodrigues ; F. Hammer ; H.Flores ; M. Puech ; Y.C. Liang ; I. Fuentes-Carrera ; N. Nesvadba ; M. Lehnert ; Y. Yang ; P. Amram ; C. Balkowski ; C. Cesarsky ; H.Dannerbauer ; R. Delgado ; B. Guiderdoni ; A. Kembhavi ; B. Neichel ; G. Östlin ; L. Pozzetti ; C.D. Ravikumar ; A. Rawat ; S. di Serego Alighieri ; D. Vergani ; J. Vernet ; H. Wozniak ;
Date 2 Oct 2008
AbstractIntermediate mass galaxies (logM(Msun)>10) at z~0.6 are the likeliest progenitors of the present-day numerous population of spirals. There is growing evidence that they have evolved rapidly since the last 6 to 8 Gyr ago, and likely have formed a significant fraction of their stellar mass, often showing perturbed morphologies and kinematics. We have gathered a representative sample of 88 such galaxies and have provided robust estimates of their gas phase metallicity. For doing so, we have used moderate spectral resolution spectroscopy at VLT/FORS2 with unprecedented high S/N allowing to remove biases coming from interstellar absorption lines and extinction to establish robust values of R23=([OII]3727 + [OIII]4959,5007)/Hbeta. We definitively confirm that the predominant population of z~0.6 starbursts and luminous IR galaxies (LIRGs) are on average, two times less metal rich than the local galaxies at a given stellar mass. We do find that the metal abundance of the gaseous phase of galaxies is evolving linearly with time, from z=1 to z=0 and after comparing with other studies, from z=3 to z=0. Combining our results with the reported evolution of the Tully Fisher relation, we do find that such an evolution requires that ~30% of the stellar mass of local galaxies have been formed through an external supply of gas, thus excluding the close box model. Distant starbursts & LIRGs have properties (metal abundance, star formation efficiency & morphologies) similar to those of local LIRGs. Their underlying physics is likely dominated by gas infall probably through merging or interactions. Our study further supports the rapid evolution of z~0.4-1 galaxies. Gas exchanges between galaxies is likely the main cause of this evolution.
Source arXiv, 0810.0272
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica