Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 0810.1090

 Article overview


LCDM Satellites and HI Companions - The Arecibo ALFA Survey of NGC 2903
J. A. Irwin ; G. L. Hoffman ; K. Spekkens ; M. P. Haynes ; R. Giovanelli ; S. M. Linder ; B. Catinella ; E. Momjian ; B. S. Koribalski ; J. Davies ; E. Brinks ; W. J. G. de Blok ; M. E. Putman ; W. van Driel ;
Date 7 Oct 2008
AbstractWe have conducted a deep, complete HI survey, using Arecibo/ALFA, of a field centered on the nearby, isolated galaxy, NGC 2903, which is similar to the Milky Way in its properties. The field size was 150 kpc x 260 kpc and the final velocity range spanned from 100 to 1133 km/s. The ALFA beams have been mapped as a function of azimuth and cleaned from each azimuth-specific cube prior to forming final cubes. The final HI data are sensitive down to an HI mass of 2 x 10^5 Mo and column density of 2 x 10^{17} cm^{-2} at the 3sigma x 2deltaV level, where sigma is the rms noise level and deltaV is the velocity resolution. NGC 2903 is found to have an HI envelope that is larger than previously known, extending to at least 3 times the optical diameter of the galaxy. Our search for companions yields one new discovery with an HI mass of 2.6 x 10^6 Mo. The companion is 64 kpc from NGC 2903 in projection, is likely associated with a small optical galaxy of similar total stellar mass, and is dark matter dominated, with a total mass >10^8 Mo. In the region surveyed, there are now two known companions: our new discovery and a previously known system that is likely a dwarf spheroidal, lacking HI content. If HI constitutes 1% of the total mass in all possible companions, then we should have detected 230 companions, according to LCDM predictions. Consequently, if this number of dark matter clumps are indeed present, then they contain less than 1% HI content, possibly existing as very faint dwarf spheroidals or as starless, gasless dark matter clumps.
Source arXiv, 0810.1090
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica