Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 0811.0009

 Article overview


Gfitter - Revisiting the Global Electroweak Fit of the Standard Model and Beyond
Henning Flaecher ; Martin Goebel ; Johannes Haller ; Andreas Hoecker ; Klaus Moenig ; Joerg Stelzer ;
Date 3 Nov 2008
AbstractThe global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package Gfitter, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. Including the direct Higgs searches, we find M_H=(116.4 +18.3 -1.3) GeV, and the 2sigma and 3sigma allowed regions [114,145] GeV and [[113,168] and [180,225]] GeV, respectively. For the strong coupling strength at fourth perturbative order we obtain alpha_S(M_Z)=0.1193 +0.0028 -0.0027(exp) +- 0.0001(theo). Finally, for the mass of the top quark, excluding the direct measurements, we find m_t=(178.2 +9.8 -4.2) GeV. In the 2HDM we exclude a charged-Higgs mass below 240 GeV at 95% confidence level. This limit increases towards larger tan(beta), where e.g., M_H+-<780 GeV is excluded for tan(beta)=70.
Source arXiv, 0811.0009
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica