Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 0811.1403

 Article overview



Supernova Remnants in the AKARI IRC Survey of the Large Magellanic Cloud
Ji Yeon Seok ; Bon-Chul Koo ; Takashi Onaka ; Yoshifusa Ita ; Ho-Gyu Lee ; Jae-Joon Lee ; Dae-Sik Moon ; Itsuki Sakon ; Hidehiro Kaneda ; Hyung Mok Lee ; Myung Gyoon Lee ; Sung Eun Kim ;
Date Mon, 10 Nov 2008 07:47:21 GMT (1812kb)
AbstractWe present the near- to mid-infared study of supernova remnants (SNRs) using the AKARI IRC Survey of the Large Magellanic Cloud (LMC). The LMC survey observed about a 10 square degree area of the LMC in five bands centered at 3, 7, 11, 15, and 24 micron using the Infrared Camera (IRC) aboard AKARI. The number of SNRs in the survey area is 21, which is about a half of the known LMC SNRs. We systematically examined the AKARI images and identified eight SNRs with distinguishable infrared emission. All of them were detected at $gtrsim 10$ micron and some at 3 and 7 micron, too. We present their AKARI images and fluxes. In the 11/15 micron versus 15/24 micron color-color diagram, the SNRs appear to be aligned along a modified blackbody curve, representing thermal emission from dust at temperatures between 90 and 190 K. There is a good correlation between the 24 micron and X-ray fluxes of the SNRs. It was also found that there is a good correlation between the 24 micron and radio fluxes even if there is no direct physical connection between them. We considered the origin of the detected mid-infrared emission in individual SNRs. We conclude that the mid-infrared emissions in five SNRs that show morphologies similar to the X-rays are dominated by thermal emission from hot dust heated by X-ray emitting plasma. Their 15/24 micron color temperatures are generally higher than the Spitzer 24/70 micron color temperatures, which suggests that a single-temperature dust model cannot describe the full spectral energy distribution (SED) of the SNRs. It also implies that our understanding of the full SED is essential for estimating the dust destruction rate of grains by SNR shocks.
Source arXiv, 0811.1403
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica