Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 0902.0365

 Article overview


Tracing the young massive high-eccentricity binary system Theta 1 Orionis C through periastron passage
S. Kraus ; G. Weigelt ; Y.Y. Balega ; J.A. Docobo ; K.-H. Hofmann ; T. Preibisch ; D. Schertl ; V.S. Tamazian ; T. Driebe ; K. Ohnaka ; R. Petrov ; M. Schoeller ; M. Smith ;
Date 2 Feb 2009
AbstractThe nearby high-mass star binary system Theta 1 Orionis C is the brightest and most massive of the Trapezium OB stars at the core of the Orion Nebula Cluster, and it represents a perfect laboratory to determine the fundamental parameters of young hot stars and to constrain the distance of the Orion Trapezium Cluster. Between January 2007 and March 2008, we observed T1OriC with VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well as with bispectrum speckle interferometry with the ESO 3.6m and the BTA 6m telescopes (B’- and V’-band). Combining AMBER data taken with three different 3-telescope array configurations, we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image, showing the T1OriC system with a resolution of approx. 2 mas. To extract the astrometric data from our spectrally dispersed AMBER data, we employed a new algorithm, which fits the wavelength-differential visibility and closure phase modulations along the H- and K-band and is insensitive to calibration errors induced, for instance, by changing atmospheric conditions. Our new astrometric measurements show that the companion has nearly completed one orbital revolution since its discovery in 1997. The derived orbital elements imply a short-period (P=11.3 yrs) and high-eccentricity orbit (e=0.6) with periastron passage around 2002.6. The new orbit is consistent with recently published radial velocity measurements, from which we can also derive the first direct constraints on the mass ratio of the binary components. We employ various methods to derive the system mass (M_system=44+/-7 M_sun) and the dynamical distance (d=410+/-20 pc), which is in remarkably good agreement with recently published trigonometric parallax measurements obtained with radio interferometry.
Source arXiv, 0902.0365
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica