Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 0904.3108

 Article overview


Rates and Delay Times of Type Ia Supernovae
Ashley J. Ruiter ; Krzysztof Belczynski ; Chris L. Fryer ;
Date 21 Apr 2009
AbstractWe analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae progenitors. We present and discuss evolutionary scenarios in which a white dwarf reaches the Chandrasekhar-mass and potentially explodes in a Type Ia supernova. We consider: Double Degenerate (DDS), Single Degenerate (SDS), and AM Canum Venaticorum scenarios. The results are presented for two different star formation histories; burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency alpha = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. We point out that only the rates for two merging carbon-oxygen white dwarfs, the only systems found in the DDS, are consistent with the observed rates for typical Milky Way-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power-law implies more Type Ia supernovae (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that white dwarf mergers cannot produce a thermonuclear explosion given the current understanding of accreting white dwarfs, either the evolutionary calculations along with accretion physics are incorrect, or the explosion calculations are inaccurate and need to be revisited (Abridged).
Source arXiv, 0904.3108
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica