Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 0907.2329

 Article overview


Multiple dynamic regimes in concentrated microgel systems
David A. Sessoms ; Irmgard Bischofberger ; Luca Cipelletti ; Véronique Trappe ;
Date 14 Jul 2009
AbstractWe investigate dynamical heterogeneities in the collective relaxation of a concentrated microgel system, for which the packing fraction can be conveniently varied by changing the temperature. The packing fraction dependent mechanical properties are characterised by a fluid-solid transition, where the system properties switch from a viscous to an elastic low-frequency behaviour. Approaching this transition from below, we find that the range of spatial correlations in the dynamics increases. Beyond this transition, the spatial correlation range reaches a maximum, extending over the entire observable system size of approximately 5 mm. Increasing the packing fraction even further leads to a second transition, which is characterised by the development of large zones of lower and higher dynamical activity that are well separated from each other; the range of correlation decreases at this point. This striking non-monotonic dependence of the spatial correlation length on volume fraction is reminiscent of the behaviour recently observed at the jamming/rigidity transition in granular systems (Lechenault et al. 2008). We identify this second transition as the transition to ’squeezed’ states, where the constituents of the system start to exert direct contact forces on each other, such that the dynamics becomes increasingly determined by imbalanced stresses. Evidence of this transition is also found in the frequency dependence of the storage and loss moduli, which become increasingly coupled as direct friction between the particles starts to contribute to the dissipative losses within the system. To our knowledge, our data provide the first observation of a qualitative change in dynamical heterogeneity as the dynamics switch from purely thermally-driven to stress-driven.
Source arXiv, 0907.2329
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica