Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 0908.0189

 Article overview



The main-sequence rotation-colour relation in the Coma Berenices open cluster
A. Collier Cameron ; V. A. Davidson ; L. Hebb ; G. Skinner ; D. R. Anderson ; D. J. Christian ; W. I. Clarkson ; B. Enoch ; J. Irwin ; Y. Joshi ; C. A. Haswell ; C. Hellier ; K. D. Horne ; S. R. Kane ; T. A. Lister ; P. F. L. Maxted ; A. J. Norton ; N. Parley ; D. Pollacco ; R. Ryans ; A. Scholz ; I. Skillen ; B. Smalley ; R. A. Street ; R. G. West ; D. M. Wilson ; P.J. Wheatley ;
Date 3 Aug 2009
AbstractWe present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J-K colour with a root-mean square scatter of only 2 percent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling timescale for angular momentum transport from a rapidly-spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onward, stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of order 9 percent (RMS), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P proportional to t^0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Source arXiv, 0908.0189
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica