Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 0909.2679

 Article overview



Observational evidence for the link between the variable optical continuum and the subparsec-scale jet of the radio galaxy 3C 390.3
T.G. Arshakian ; J. Leon-Tavares ; A.P. Lobanov ; V.H. Chavushyan ; A.I. Shapovalova ; A.N. Burenkov ; J.A. Zensus ;
Date 15 Sep 2009
AbstractThe mechanism and the region of generation of variable continuum emission are poorly understood for radio-loud AGN because of a complexity of the nuclear region. High-resolution radio VLBI (very long baseline interferometry) observations allow zooming into a subparsec-scale region of the jet in the radio-loud galaxy 3C 390.3. We combined the radio VLBI and the optical data covering the time period of 14 years to look for a link between optical flares and parsec-scale jet. We identify two stationary and nine moving radio features in the innermost subparsec-scale region of the jet. We found a significant correlation (at a confidence level of >99.99 %) between the ejected jet components and optical continuum flares. The epochs at which the moving knots pass through the location of a stationary radio feature and the optical light curve reaches the maximum are correlated. The radio events follow the maxima of optical flares with the mean time delay of 0.10 years. This correlation can be understood if the variable optical continuum emission is generated in the innermost part of the jet. A possible mechanism of the energy release is the ejection of knots of high-energy electrons that are accelerated in the jet flow and generate flares of synchrotron continuum emission in the wide range of frequencies from radio to X-ray bands. In this scenario, the beamed optical continuum emission from the jet and counterjet ionizes a gas in a subrelativistic outflow surrounding the jet, which results in a formation of two outflowing conical regions with broad emission lines (in addition to the conventional broad line region around the central nucleus).
Source arXiv, 0909.2679
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica