Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 0909.2875

 Article overview


A Search for Additional Planets in the NASA EPOXI Observations of the Exoplanet System GJ 436
Sarah Ballard ; Jessie L. Christiansen ; David Charbonneau ; Drake Deming ; Matthew J. Holman ; Daniel Fabrycky ; Michael F. A'Hearn ; Dennis D. Wellnitz ; Richard K. Barry ; Marc J. Kuchner ; Timothy A. Livengood ; Tilak Hewagama ; Jessica M. Sunshine ; Don L. Hampton ; Carey M. Lisse ; Sara Seager ; Joseph F. Veverka ;
Date 15 Sep 2009
AbstractWe present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits, or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.0 R_Earth interior to GJ 436b with 95% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. However, if such a planet were to transit, we rule out planets larger than 1.5 R_Earth with orbital periods less than 13 days with 95% confidence. We also place dynamical constraints on additional bodies in the GJ 436 system. Our analysis should serve as a useful guide for similar analyses for which radial velocity measurements are not available, such as those discovered by the Kepler mission. These dynamical constraints on additional planets with periods from 0.5 to 9 days rule out coplanar secular perturbers as small as 10 M_Earth and non-coplanar secular perturbers as small as 1 M_Earth in orbits close in to GJ 436b. We present refined estimates of the system parameters for GJ 436. We also report a sinusoidal modulation in the GJ 436 light curve that we attribute to star spots. [Abridged]
Source arXiv, 0909.2875
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica