Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 0909.5256

 Article overview


Digging into NGC 6334I(N): Multiwavelength Imaging of a Massive Protostellar Cluster
C. L. Brogan ; T. R. Hunter ; C. J. Cyganowski ; R. Indebetouw ; H. Beuther ; K. M. Menten ; S. Thorwirth ;
Date 29 Sep 2009
AbstractWe present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a reanalysis of archival VLA continuum data, 2MASS and Spitzer images. As shown previously, the brightest 1.3 mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6 cm along with a new spatial component at 7 mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3 mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH3OH rotation temperatures of 165pm 9 K and 145pm 12 K for SMA1 and SMA2, respectively. We estimate a diameter of 1400 AU for the SMA1 hot core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >800 AU separation binary that may explain the previously-suggested precession of the outflow emanating from the SMA1 region. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2 km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5--4) and IRAC 4.5 micron emission; 24 micron emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6. We also detect a total of 83 Class I CH3OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.
Source arXiv, 0909.5256
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica