Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 0910.0280

 Article overview



Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles
William P. Krekelberg ; Mark J. Pond ; Gaurav Goel ; Vincent K. Shen ; Jeffrey R. Errington ; Thomas M. Truskett ;
Date 1 Oct 2009
AbstractRosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld’s observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.
Source arXiv, 0910.0280
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica