Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 0910.5666

 Article overview


Chandra ACIS Survey of M33 (ChASeM33): The enigmatic X-ray emission from IC131
R. Tuellmann ; K. S. Long ; T. G. Pannuti ; P. F. Winkler ; T. J. Gaetz ; P. P. Plucinsky ; B. F. Williams ; K. D. Kuntz ; W. Pietsch ; W. P. Blair ; F. Haberl ; R. K. Smith ;
Date 29 Oct 2009
AbstractWe present the first X-ray analysis of the diffuse hot ionized gas and the point sources in IC131, after NGC604 the second most X-ray luminous giant HII region in M33. The X-ray emission is detected only in the south eastern part of IC131 (named IC131-se) and is limited to an elliptical region of ~200pc in extent. This region appears to be confined towards the west by a hemispherical shell of warm ionized gas and only fills about half that volume. Although the corresponding X-ray spectrum has 1215 counts, it cannot conclusively be told whether the extended X-ray emission is thermal, non-thermal, or a combination of both. A thermal plasma model of kT_e=4.3keV or a single power law of Gamma=2.1 fit the spectrum equally well. If the spectrum is purely thermal (non-thermal), the total unabsorbed X-ray luminosity in the 0.35-8keV energy band amounts to L_X = 6.8(8.7)x10^35erg/s. Among other known HII regions IC131-se seems to be extreme regarding the combination of its large extent of the X-ray plasma, the lack of massive O stars, its unusually high electron temperature (if thermal), and the large fraction of L_X emitted above 2keV (~40-53%). A thermal plasma of ~4keV poses serious challenges to theoretical models, as it is not clear how high electron temperatures can be produced in HII regions in view of mass-proportional and collisionless heating. If the gas is non-thermal or has non-thermal contributions, synchrotron emission would clearly dominate over inverse Compton emission. It is not clear if the same mechanisms which create non-thermal X-rays or accelerate CRs in SNRs can be applied to much larger scales of 200pc. In both cases the existing theoretical models for giant HII regions and superbubbles do not explain the hardness and extent of the X-ray emission in IC131-se.
Source arXiv, 0910.5666
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica