Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 0911.4173

 Article overview


A new way to perform partial wave decompositions of few-nucleon forces
J. Golak ; D. Rozpedzik ; R. Skibinski ; K. Topolnicki ; H. Witala ; W. Glockle ; A. Nogga ; E. Epelbaum ; H. Kamada ; Ch. Elster ; I. Fachruddin ;
Date 21 Nov 2009
AbstractWe formulate a general and exact method of partial wave decomposition (PWD) of any nucleon-nucleon (NN) potential and any three-nucleon (3N) force. The approach allows one to efficiently use symbolic algebra software to generate the interaction dependent part of the program code calculating the interaction. We demonstrate the feasibility of this approach for the one-boson exchange BonnB potential, a recent nucleon-nucleon chiral force and the chiral two-pion-exchange three-nucleon force. In all cases very good agreement between the new and the traditional PWD is found. The automated PWD offered by the new approach is of the utmost importance in view of future applications of numerous chiral N3LO contributions to the 3N force in three nucleon calculations.
Source arXiv, 0911.4173
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica