forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 2982
Articles: 2'033'387
Articles rated: 2577

26 January 2021
  » arxiv » 0911.4682

 Article overview

Impossibility of large phase shifts via the "giant Kerr effect" with single-photon wavepackets
Julio Gea-Banacloche ;
Date 24 Nov 2009
AbstractAn approximate analytical solution is presented, along with numerical calculations, for a system of two single-photon wavepackets interacting via an ideal, localized Kerr medium. It is shown that, because of spontaneous emission into the initially unoccupied temporal modes, the cross-phase modulation in the Schrodinger picture is very small as long as the spectral width of the single-photon pulses is well within the medium’s bandwidth. In this limit, the Hamiltonian used can be derived from the "giant Kerr effect" for a four-level atom, under conditions of electromagnetically-induced transparency; it is shown explicitly that the linear absorption in this system increases as the pulse’s spectral width approaches the medium’s transparency bandwidth, and hence, as long as the absorption probability remains small, the maximum cross-phase modulation is limited to essentially useless values. These results are in agreement with the general, causality- and unitarity-based arguments of Shapiro and co-workers.
Source arXiv, 0911.4682
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica