Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 0912.0274

 Article overview


The SAURON project - XV. Modes of star formation in early-type galaxies and the evolution of the red sequence
K. L. Shapiro ; J. Falcon-Barroso ; G. van de Ven ; P. T. de Zeeuw ; M. Sarzi ; R. Bacon ; A. Bolatto ; M. Cappellari ; D. Croton ; R. L. Davies ; E. Emsellem ; O. Fakhouri ; D. Krajnovic ; H. Kuntschner ; R. M. McDermid ; R. F. Peletier ; R. C. E. van den Bosch ; G. van der Wolk ;
Date 1 Dec 2009
AbstractWe combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star formation, as traced by PAH emission, with measured star formation rates that compare well to those estimated from other tracers. This star formation proceeds according to established scaling relations with molecular gas content, in surface density regimes characteristic of disk galaxies and circumnuclear starbursts. We find that star formation in early-type galaxies happens exclusively in fast-rotating systems and occurs in two distinct modes. In the first, star formation is a diffuse process, corresponding to widespread young stellar populations and high molecular gas content. The equal presence of co- and counter-rotating components in these systems strongly implies an external origin for the star-forming gas, and we argue that these star formation events may be the final stages of (mostly minor) mergers that build up the bulges of red sequence lenticulars. In the second mode of star formation, the process is concentrated into well-defined disk or ring morphologies, outside of which the host galaxies exhibit uniformly evolved stellar populations. This implies that these star formation events represent rejuvenations within previously quiescent stellar systems. Evidence for earlier star formation events similar to these in all fast rotating early-type galaxies suggests that this mode of star formation may be common to all such galaxies, with a duty cycle of roughly 1/10, and likely contributes to the embedded, co-rotating inner stellar disks ubiquitous in this population.
Source arXiv, 0912.0274
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica