Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1003.3832

 Article overview


Quantum mechanical and information theoretic view on classical glass transitions
Claudio Castelnovo ; Claudio Chamon ; David Sherrington ;
Date 19 Mar 2010
AbstractUsing the mapping of the Fokker-Planck description of classical stochastic dynamics onto a quantum Hamiltonian, we argue that a dynamical glass transition in the former must have a precise definition in terms of a quantum phase transition in the latter. At the dynamical level, the transition corresponds to a collapse of the excitation spectrum at a critical point. At the static level, the transition affects the ground state wavefunction: while in some cases it could be picked up by the expectation value of a local operator, in others the order may be non-local, and impossible to be determined with any local probe. Here we propose instead to use concepts from quantum information theory that are not centered around local order parameters, such as fidelity and entanglement measures. We show that for systems derived from the mapping of classical stochastic dynamics, singularities in the fidelity susceptibility translate directly into singularities in the heat capacity of the classical system. In classical glassy systems with an extensive number of metastable states, we find that the prefactor of the area law term in the entanglement entropy jumps across the transition. We also discuss how entanglement measures can be used to detect a growing correlation length that diverges at the transition. Finally, we illustrate how static order can be hidden in systems with a macroscopically large number of degenerate equilibrium states by constructing a three dimensional lattice gauge model with only short-range interactions but with a finite temperature continuous phase transition into a massively degenerate phase.
Source arXiv, 1003.3832
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica