Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1003.3839

 Article overview


Moments of the Hilbert-Schmidt probability distributions over determinants of real two-qubit density matrices and of their partial transposes
Paul B. Slater ;
Date 19 Mar 2010
AbstractThe nonnegativity of the determinant of the partial transpose of a two-qubit (4 x 4) density matrix is both a necessary and sufficient condition for its separability. While the determinant is restricted to the interval [0,1/256], the determinant of the partial transpose can range over [-1/16,1/256], with negative values corresponding to entangled states. We report here the exact values of the first nine moments of the probability distribution of the partial transpose over this interval, with respect to the Hilbert-Schmidt (metric volume element) measure on the nine-dimensional convex set of real two-qubit density matrices. Rational functions C_{2 j}(m), yielding the coefficients of the 2j-th power of even polynomials occurring at intermediate steps in our derivation of the m-th moment, emerge. These functions possess poles at finite series of consecutive half-integers (m=-3/2,-1/2,...,(2j-1)/2), and certain (trivial) roots at finite series of consecutive natural numbers (m=0, 1,...). Additionally, the (nontrivial) dominant roots of C_{2 j}(m) approach the same half-integer values (m = (2 j-1)/2, (2 j-3)/2,...), as j increases. The first two moments (mean and variance) found--when employed in the one-sided Chebyshev inequality--give an upper bound of 30397/34749 = 0.874759 on the separability probability of real two-qubit density matrices. We are able to report general formulas for the m-th moment of the Hilbert-Schmidt probability distribution of the density matrix determinant over [0,1/256], in the real, complex and quaternionic two-qubit cases.
Source arXiv, 1003.3839
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica