Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1005.0637

 Article overview



A cold complex chemistry toward the low-mass protostar B1-b: evidence for complex molecule production in ices
Karin I. Oberg ; Sandrine Bottinelli ; Jes K. Jorgensen ; Ewine F. van Dishoeck ;
Date 4 May 2010
AbstractGas-phase complex organic molecules have been detected toward a range of high- and low-mass star-forming regions at abundances which cannot be explained by any known gas-phase chemistry. Recent laboratory experiments show that UV irradiation of CH3OH-rich ices may be an important mechanism for producing complex molecules and releasing them into the gas-phase. To test this ice formation scenario we mapped the B1-b dust core and nearby protostar in CH3OH gas using the IRAM 30m telescope to identify locations of efficient non-thermal ice desorption. We find three CH3OH abundance peaks tracing two outflows and a quiescent region on the side of the core facing the protostar. The CH3OH gas has a rotational temperature of ~10 K at all locations. The quiescent CH3OH abundance peak and one outflow position were searched for complex molecules. Narrow, 0.6-0.8 km s-1 wide, HCOOCH3 and CH3CHO lines originating in cold gas are clearly detected, CH3OCH3 is tentatively detected and C2H5OH and HOCH2CHO are undetected toward the quiescent core, while no complex molecular lines were found toward the outflow. The core abundances with respect to CH3OH are ~2.3% and 1.1% for HCOOCH3 and CH3CHO, respectively, and the upper limits are 0.7-1.1%, which is similar to most other low-mass sources. The observed complex molecule characteristics toward B1-b and the pre-dominance of HCO-bearing species suggest a cold ice (below 25 K, the sublimation temperature of CO) formation pathway followed by non-thermal desorption through e.g. UV photons traveling through outflow cavities. The observed complex gas composition together with the lack of any evidence of warm gas-phase chemistry provide clear evidence of efficient complex molecule formation in cold interstellar ices.
Source arXiv, 1005.0637
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica