Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1007.1572

 Article overview



A SQUID based read-out of sub-attoNewton force sensor operating at millikelvin temperatures
O. Usenko ; A. Vinante ; G. Wijts ; T.H. Oosterkamp ;
Date 9 Jul 2010
AbstractAn increasing number of experiments require the use of ultrasensitive nanomechanical resonators. Relevant examples are the investigation of quantum effects in mechanical systems [1] or the detection of exceedingly small forces as in Magnetic Resonance Force Microscopy (MRFM) [2]. The force sensitivity of a mechanical resonator is typically limited by thermal fluctuations, which calls for detection methods capable of operating at ultralow temperature. Commonly used interferometric techniques, despite their excellent sensitivity, may not be an optimal choice at millikelvin temperatures, because of unwanted resonator heating caused by photon absorption. Although alternative detection techniques based on microwave cavities [3] [4] [5] have shown to perform better at ultralow temperature, these techniques still suffer from the fact that the detection sensitivity decreases as the power input is decreased. Here, we present a measurement approach based on the detection, through a Superconducting Quantum Interference Device (SQUID), of the change of magnetic flux induced in a coil by the motion of a magnetic particle attached to a resonator. This detection scheme avoids direct heating of the resonator, as it does not involve reflecting optical or microwave photons to the resonator. By cooling an ultrasoft silicon resonator to 25 mK, we achieve a force noise of 0.5 aN in a 1 Hz bandwidth. We believe this detection technique can in principle be used even at sub-millikelvin temperatures. Furthermore, it could be used to improve the sensitivity of MRFM experiments, which aim at three dimensional imaging at atomic resolution.
Source arXiv, 1007.1572
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica