Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1007.1965

 Article overview


Type-1.5 superconductivity in two-band systems
Egor Babaev ; Johan Carlstrom ;
Date 12 Jul 2010
AbstractIn the usual Ginzburg-Landau theory the critical value of the ratio of two fundamental length scales in the thery $kappa_c=1/sqrt{2}$ separates regimes of type-I and type-II superconductivity. The latter regime possess thermodynamically stable vortex excitations which interact with each other repulsively and tend to form vortex lattices. It was shown in [5] that this dichotomy in broken in U(1)xU(1) Ginzburg-Landau models which possess three fundamental length scales which results in the existence of a distinct phase with vortex excitations which interact attractively at large length scales and repulsively at shorter distances. Here we briefly review these results in particular discussing the role of interband Josephson coupling and the case where only one band is superconducting while superconductivity in another band is induced by interband proximity effect. The report is partially based on E. Babaev, J. Carlstrom, J. M. Speight arXiv:0910.1607.
Source arXiv, 1007.1965
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica