Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'497'992
Articles rated: 2609

16 April 2024
 
  » arxiv » 1007.4701

 Article overview


The Energetics of Molecular Gas in NGC 891 from H2 and FIR Spectroscopy
G.J. Stacey ; V. Charmandaris ; F. Boulanger ; Yanling Wu ; F. Combes ; S.J.U. Higdon ; J.D.T. Smith ; T. Nikola ;
Date 27 Jul 2010
AbstractWe have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC,891, using a 34-position map in the lowest three pure rotational H$_2$ lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction corrected total luminosity of $sim2.8 imes 10^{7}$ L$_{odot}$, or 0.09\% of the total-infrared luminosity of NGC,891. The H$_2$ line ratios are nearly constant along the plane of the galaxy -- we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H$_2$ level excitation temperatures increase monotonically indicating more than one component to the emitting gas. More than 99\% of the mass is in the lowest excitation (T$_{ex}$ $sim$125 K) ’’warm’’ component. In the inner galaxy, the warm H$_2$ emitting gas is $sim$15\% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photo-dissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [OI] and [CII] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70\%) of the S(1) line arises from low excitation PDRs, while most (80\%) of the S(2) and the remainder of the S(1) line emission arises from low velocity microturbulent dissipation.
Source arXiv, 1007.4701
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica